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Abstract

With the integration of image modality, the seman-
tic space of multimodal large language models
(MLLMs) is more complex than text-only mod-
els, making their interpretability more challeng-
ing and their alignment less stable, particularly
susceptible to low-quality data, which can lead
to inconsistencies between modalities, hallucina-
tions, and biased outputs. As a result, developing
interpretability methods for MLLMs is crucial
for improving alignment quality and efficiency.
In text-only LLMs, Sparse Autoencoders (SAEs)
have gained attention for their ability to interpret
latent representations. However, extending SAEs
to multimodal settings presents new challenges
due to modality fusion and the difficulty of isolat-
ing cross-modal representations. To address these
challenges, we introduce SAE-V , a mechanistic
interpretability framework that extends the SAE
paradigm to MLLMs. By identifying and analyz-
ing interpretable features along with their corre-
sponding data, SAE-V enables fine-grained inter-
pretation of both model behavior and data quality,
facilitating a deeper understanding of cross-modal
interactions and alignment dynamics. Moreover,
by utilizing cross-modal feature weighting, SAE-
V provides an intrinsic data filtering mechanism
to enhance model alignment without requiring ad-
ditional models. Specifically, when applied to the
alignment process of MLLMs, SAE-V-based data
filtering methods could achieve more than 110%
performance with less than 50% data. Our results
highlight SAE-V’s ability to enhance interpretabil-
ity and alignment in MLLMs, providing insights
into their internal mechanisms.

*Equal contribution 1Institute for AI, Peking University. Corre-
spondence to: Yaodong Yang <yaodong.yang@pku.edu.cn>.
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Figure 1. Operational Dynamics of SAE-V Based Data Filter-
ing Method. SAE-V encodes and interprets the representation
inside MLLM during alignment and inference time. Based on
this representation, we could reveal the modality gap within the
data, and improve the alignment process through the selection of
modality-fused, high-quality data. This pipeline performs data
filtering without requiring additional models, relying instead on
MLLM itself to prioritize high-value data effectively.

1. Introduction
With the development and success of large language mod-
els (LLMs) (Dubey et al., 2024; Achiam et al., 2023), re-
searchers have begun to introduce visual understanding to
these models, thereby extending their operational scope
from language to a mix of vision and language, resulting in
the creation of powerful multimodal large language models
(MLLMs) (Alayrac et al., 2022; Liu et al., 2024; Team et al.,
2024; Team, 2024). To enhance the multimodal understand-
ing capabilities of MLLMs, the research community has
explored various architectures, including using individual
image/text encoders to encode cross-modal information into
a joint representation space (Zhang et al., 2023; Liu et al.,
2024; Zhu et al., 2024; Wu et al., 2024b) and leveraging
image tokenizers to transform all inputs into a unified token
sequence (Team, 2024; Xie et al., 2024; Wu et al., 2024a;
Wang et al., 2024). Despite the difference in the architec-
tures of these models, their essential goal is the same: Fuse
the text and image representation space into a joint multi-
modal semantic space.

As MLLMs continue to scale up in both size and capabil-
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ity, their interpretability and controllability remain a sig-
nificant challenge (Zhang & Zhu, 2018; Stan et al., 2024).
Currently, mechanistic interpretability techniques such as
circuit analysis (Olsson et al., 2022) and dictionary learning
with sparse autoencoders (Cunningham et al., 2023) are the
most widely recognized approaches to interpreting LLMs.
However, their application to MLLMs, especially in the
context of cross-modal integration, has been limited. There
is a pressing need for specialized tools and frameworks that
can unravel the intricate workings of MLLMs.

Moreover, current interpretability efforts are focused mainly
on interpreting models, rather than applying this inter-
pretability to real alignment situations, which also makes
it difficult to evaluate these methods effectively. Top-down
approaches, such as Representation Engineering (Zou et al.,
2023) and activation steering (Turner et al., 2023; Pan-
ickssery et al., 2023), can directly evaluate the control ef-
fects of interpretability methods through control or unlearn-
ing techniques. However, for bottom-up methods like circuit
analysis (Wang et al., 2022), sparse autoencoders (SAEs)
(Cunningham et al., 2023), and cross-coders, effective eval-
uation methods beyond loss reduction are limited. Based on
the previous discussion, can we propose a bottom-up multi-
modal interpretability approach that can directly enhance
the alignment process?

In this work, we developed SAE-V , a mechanistic inter-
pretability framework for MLLMs that extends the SAE
paradigm to MLLMs. These tools are then applied to in-
terpret the training process of transitioning from LLMs to
MLLMs, as well as the process of enhancing the multimodal
capabilities of MLLMs. Furthermore, utilizing the inter-
pretable features of SAE-V models and their relationship
to MLLM capabilities, we designed a data filtering metric
based on SAE-V . This metric can filter out data that hinder
the development of multimodal understanding, achieving
stronger alignment with a smaller dataset. Overall, our work
makes the following contributions:

• Multimodal interpretability tool We developed mech-
anistic interpretability tools for MLLMs based on pre-
vious attempts on LLMs and trained corresponding
SAE-V models. We demonstrated that SAE-V models
trained on MLLMs can effectively extract interpretable
features, and SAE-V models can be transferred to the
corresponding LLMs. Specifically, the reconstruction
loss of our SAE-V models trained on MLLMs is 38.3%
and 50.6% compared to the SAE model when applied
to MLLMs and LLMs, respectively.

• Interpreting Multimodal Alignment Process We uti-
lized SAE-V to study the feature distribution through-
out the alignment process. We discovered that the fea-
ture distribution of SAE-V corresponds to the MLLM’s
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Figure 2. The interpretability and data filtering pipeline of SAE-
V. SAE-V is trained to encode MLLM activations into sparse,
interpretable features. We first acquire the cross-modal weight of
these features via SAE-V models, then reversely score the given
data by the weighted average of each feature’s score. In this way,
we provide an intrinsic data filtering tool by eliciting MLLM’s
latent representation of these data.

performance on multimodal understanding tasks.

• Filtering metric to improve alignment Based on the
previous investigation with SAE-V , we developed a
metric to filter multimodal datasets and acquire high-
quality data, therefore improving alignment quality and
efficiency. Experiments demonstrate that our filtering
tool achieves more than 110% performance compared
to the full dataset while using 50% less data, under-
scoring the efficiency and effectiveness of SAE-V .

2. Methodology
In this section, we present our method to train, evaluate, and
apply SAE-V to interpret MLLMs and multimodal data.

2.1. Preliminary: Sparse Autoencoder Paradigm

We adopt SAE-V (denoted as Sθ) architecture from the
methodology proposed in (Bricken et al., 2023), which com-
prises an encoder and a feature dictionary Fθ: {fk}nk=1 as
a decoder. Let the input be denoted as H ∈ Rl×m, the
hidden state of a specific layer of a MLLMMθ. The SAE-V
encoding operation Sθ(·) is

Z = ReLU(WencH + benc), (1)

where Z ∈ Rl×n is the feature activation of the input. The
reconstruction loss of Sθ donates as

LR = ||H − Z × (f1,f2, . . . ,fm)⊤||22. (2)

The training loss is defined by

L = LR + λL1, (3)

where L1 = ||Z||1 adds a sparsity constraint to the learned
features and λ is a hyperparameter controlling the level
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Algorithm 1 Cosine similarity score Ranking
Require: Text token vocabulary: T ; vision token vocab-
ulary: V; multimodal dataset D = {di}pi=1; MLLM pa-
rameterized byMθ; SAE-V model Sθ; features of SAE-V
model Fθ: {fk}nk=1; activation bound: δ; cosine similar-
ity function C (Equation 7)
Ensure: Ranked data DR

Stage 1: Collect Feature Activation Token
Initialize activated token set of features Ak ← ∅
Ds ← Sample(D)
for each di ∈ Ds do
Hi ←Mθ(di)
Zi ← Sθ(Hi)
for each fk ∈ Fθ do
Ak ← Ak ∪{hj : hj ∈ Hi, zj = ejZi, zjf

⊤
k > δ}

end for
end for
Stage 2: Compute Cross-modal Weight
Initialize cross-modal weight of features ωk ← 0
for each fk ∈ Fθ do
ωk ← C(TopK(Ak ∩ T ),TopK(Ak ∩ V))

end for
Stage 3: Rank Dataset by Cross-modal Weight
Initialize cross-modal score of data si ← 0
for each di ∈ D do
Zi ← Sθ(Mθ(di))
Fi ← {fk:∥fkZ

⊤
i ∥∞ > δ}

si ←
∑

fk∈Fi
ωk

end for
DR ← Sort(D, {si}ni=1)

of sparsity. The training results could also quantized by
incorporating an additional sparsity constraint via 1L0 =
||Z||0, which counts the number of nonzero elements in the
learned features Z.

2.2. Interpreting Multimodal Data with SAE-V

It has been previously demonstrated (Gao et al., 2024; Cun-
ningham et al., 2023) that SAE can be employed to interpret
how LLMs encode semantic information from these models.
This feature motivates us to apply SAE-V to assess the qual-
ity of the data and thus facilitate data filter for alignment.

We adopt a cosine similarity score ranking algorithm for
data filtering (shown in Algorithm 1). Let the multimodal
training dataset be donated as D = {di}pi=1, where di =
{uj :uj ∈ T ∨ uj ∈ V}mj=1 is a set of tokens from text
vocabulary T and tokens from vision vocabulary V . We
acquire feature activation token zj by MLLM forward and

Equation 1, i.e.

Hi =Mθ(di) (4)
Zi = Sθ(Hi), (5)
zj = ejZi, (6)

where ej = (0, 0, . . . , 1︸︷︷︸
j-th position

, . . . , 0).

We define a SAE-V feature fk is activated on zj if zjf⊤
k >

δ, where δ is activation bound. Correspondingly, we state
that fk is activated on di if ∃ zj ∈ Zi activating fk.

Our algorithm 1 consists of three stages: (1) Collecting
feature activation tokens from dataset, (2) Computing cross-
modal weight of SAE-V features, and (3) Ranking dataset
by cross-modal weight.

1. Feature Activation Token Collecting We first sample
a small subset DS of the training dataset D and input
these samples into the MLLM to obtain hidden states
H . These hidden states are then fed into the SAE-V
encoder to extract feature activations defined as Equa-
tion 4. For each feature, we collect its hidden state
tokens thereby obtaining a sample of feature activation
tokens across the dataset.

2. SAE-V Feature Weighting For each feature fk,
we identify its top-K hidden state text tokens t =
TopK(Ak ∩ T ) and top-K hidden state vision tokens
v = TopK(Ak ∩ V), where the top-K is ranked by the
activation value zjf

⊤
k of the token. We then compute

the cosine similarity between the two lists of tokens,
donating the cross-modal weight of feature fk as

Cosine(t,v) =
1

k

k∑
i=1

ti · vi

||ti||||vi||
, (7)

which represents the capability of the feature to capture
multimodal information within data.

3. Data Ranking Using the weighted features of SAE-V
model, we score the entire training dataset. The cosine
similarity score of each piece of data is defined as the
sum of the cosine similarity scores of its activating
features. We rank the data set by the score and the
resulting cosine similarity score order allows us to
filter data that are better aligned with the structures of
multimodal semantic information.

We present our experiments and results in Section 4, demon-
strating that our cosine similarity score ranking method can
effectively filter high-quality data from the training data set.
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3. Interpretability Analysis with SAE-V

In this section, we conduct experiments on the SAE-V
paradigm, aiming to demonstrate the capability and transfer-
ability of SAE-V model. We also performed experiment to
prove the effectiveness of our SAE-V-based data interpreting
tool from the inference side.

3.1. Training and Evaluating SAE-V Model

We trained a series of SAE and SAE-V models on MLLMs
and their base LLMs. We evaluated the performance of these
models, and the results demonstrated that SAE-V model
is capable of interpreting MLLMs and that SAE-V model
trained on MLLM can be effectively transferred to its origi-
nal LLM.

3.1.1. EXPERIMENT SETUP

Datasets For text-only and multimodal situations, we se-
lected the Pile (Gao et al., 2020) and Obelics (Laurençon
et al., 2023) datasets separately. Specifically, we sampled
100K data from each dataset as the train set and 10K data
as the test set. The Pile is a diverse language modeling
dataset for LLM pretraining, and Obelics is a massive inter-
leaved image-text dataset for MLLM pretraining. These two
datasets are widely recognized in various pretraining and
interpretability works (Black et al., 2022; Biderman et al.,
2023; Cunningham et al., 2023; Team, 2024).

Models We selected two generic MLLMs, LLaVA-NeXT-
7B (Liu et al., 2024) and Chameleon-7B (Team, 2024), as
our target models. These two models represent two distinct
architectures, and testing our method on them can prove that
our method is applicable to different architectures.

Additionally, we also studied Anole-7B (Chern et al., 2024)
and Mistral-7B (Jiang et al., 2023) to compare the be-
havior of SAE and SAE-V models before and after fine-
tuning, specifically the transitioning fine-tuning from LLM
to MLLM. Anole-7B is a variant of Chameleon-7B, with its
image generation capability unlocked, while Mistral-7B is
the base LLM of LLaVA-NeXT-7B. 1

Evaluation Metrics To evaluate the performance of SAE-
V models, we use two key metrics: L0 = ||z||0 where z is
defined in Equation 6 and reconstruction loss LR in Equa-
tion 2. L0 quantifies the number of activated features, re-
flecting the method’s ability to extract interpretable features,
while reconstruction loss measures the method’s activation
reconstruction capability compared with the model output,
indicating the method’s accuracy in giving interpretations.

1We present the detailed training setup and hyper-parameters
in Appendix A.1.

3.1.2. EXPERIMENT RESULT

Model Method L0

LLaVA-NeXT-7B SAE 94.5
SAE-V 192.5

Chameleon-7B SAE 24757.6
SAE-V 50.1

Anole-7B SAE 62.1
SAE-V 50.1

Table 1. The L0 metric of SAE and SAE-V models. L0 indi-
cates the sparsity cost (average activated feature number). The
results vary significantly across models due to their architectural
differences. For Anole-7B and Chameleon-7B, SAE-V models
maintain lower L0, suggesting more efficient feature utilization.
However, LLaVA-NeXT-7B shows a contrary pattern with SAE-V
model requiring higher feature activation than SAE. We propose
that extra activated features of SAE-V model are introduced by
extra vision tokens in multimodal data. Notably, Chameleon-7B
with SAE model exhibits an unusually high sparsity cost, attributed
to multiple unseen vision tokens in the inference stage.

LLaVA-NeXT-7B Chameleon-7B Anole-7B
0

2

4

6

8

10

12

14
R

ec
on

st
ru

ct
io

n 
Lo

ss
Zero
SAE
SAE-V
Original

Figure 3. Reconstruction capability of SAE and SAE-V models.
Each section compares the metrics of zero (set all activations as
zero), SAE model, SAE-V model, and the Original reference state.
SAE-V model consistently demonstrates superior reconstruction
performance across all tested models. In Chameleon-7B and Anole-
7B, SAE performs worse than the zero baseline, which indicates
that SAE trained in text data fails to capture interpretable features
in these MLLMs.

Capability of SAE-V Model We compare the perfor-
mance of SAE-V and SAE on different multimodal models.
The L0 (shown in Table 1) varies significantly across the
three models. For LLaVA-NeXT-7B, the L0 of SAE-V is
much higher than that of SAE. For Chameleon-7B, SAE-V
performs normally, whereas the L0 of SAE is abnormally
high, indicating that SAE fails to extract sparse features.
We suppose that the failure is attributed to a large num-
ber of unseen vision tokens for SAE during the inference
stage. For Anole-7B, the L0 of SAE and SAE-V are nearly
identical. The reconstruction loss (shown in Figure 3) of
SAE-V is lower than SAE and is closer to the original acti-
vation, demonstrating that SAE-V behaves much better at
reconstructing original activation than SAE across all three
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models. The results indicate that SAE-V outperforms SAE
in terms of capability.
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Figure 4. Reconstruction performance of SAE and SAE-V. The
x-axis shows different models and task configurations, text indi-
cates text-only task, and text & vision indicates multimodal task.
The colored bars represent five experiment groups (zero activation,
SAE of Mistral-7B, SAE of LLaVA-NeXT-7B trained with the Pile,
SAE of LLaVA-NeXT-7B trained with Obliecs, original perfor-
mance). Across various settings, SAE-V consistently demonstrates
superior transferability compared to SAE and achieves reconstruc-
tion loss close to the original performance, the maximum relative
gap being 67.28%. SAE based on Mistral-7B and SAE based on
LLaVA-NeXT-7B achieves nearly the same loss in all tasks and
models, indicating the equivalence of training SAE with MLLM
and its base LLM.

Transferability of SAE-V Model We compared the recon-
struction performance of SAE-V model trained on LLaVA-
NeXT-7B and SAE model to prove that SAE-V model trained
on MLLMs can generalize to its base LLM. The findings
(shown in Figure 4) indicate that across different settings,
SAE-V model consistently achieves the best performance.
Moreover, when trained on both MLLM and LLM, SAE
model exhibits nearly identical reconstruction loss values,
showing its robust transferability.

These results highlight that training SAE-V model for
MLLMs with multimodal data is effective for interpreting
MLLMs, and even LLMs, as SAE model trained solely on
textual data fail to extract and disentangle the hidden repre-
sentations of MLLMs effectively. Moreover, SAE-V model
demonstrates superior capability in reconstructing the rea-
soning features of MLLMs compared to the standard SAE
model.

3.2. Apply SAE-V Model on Multimodal Data

In this section, we conduct an image classification task on
the ImageNet dataset (Russakovsky et al., 2015) to investi-
gate whether SAE-V can capture the key information within
images and to validate the effectiveness of the methods pro-
posed in Section 2.2 on multimodal data. We apply 4 meth-
ods, namely L0, L1, co-occurring L0, and cosine similarity
score, where co-occurring L0 is defined as the number of
features activated on at least one text and image token. The
cosine similarity score is defined as the sum of cross-modal

(d) Top 25% Patch

(a) Original Image

(c) Top 50% Patch

(b) Top 75% Patch

Figure 5. Case analysis of image patch filtering using L0 met-
ric. We rank and filter image patches according to the number of
features activated on them. The top row shows the original image
(a) and its reduced-patch versions retaining 75% (b), 50% (c), and
25% (d). In this dog image, the patches are filterd out from edge
to the middle and preserved almost only dog patches, suggesting
that SAE-V model is preserving the main semantic information of
the image.

weights of features, consistent with Algorithm 1. We adopt
these metrics to filter image patches, thus obtaining images
that preserve 75%, 50%, and 25% patches, respectively. 2
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Figure 6. The classification performance on ImageNet. We com-
pare the classification accuracy after filtering the image patches
with L0 method, L1 method, co-occurrence L0 method, cosine
similarity score method, and the random baseline. All methods
achieve high accuracy when preserving 75% or 50% patches and
L0 method, L1 method, and cosine similarity score method main-
tains high accuracy even in the least patches. The result shows that
SAE-V is efficient in capturing critical information from images.

Case Analysis Figure 5 illustrates the image patches when
using L0 metric for filtering. Even when employing the
simplest L0 metric, SAE-V is still able to effectively capture
the critical semantic information of the image. 3

2We present complete algorithms of 4 methods in Ap-
pendix C.1.

3More cases and analyses are presented in Appendix C.2.
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Quantized Results The quantized results are presented in
Figure 6, where we observe that, for all methods, preserv-
ing 75% or 50% of the patches achieves an accuracy close
to that obtained using the full image. In the challenging
scenario where only 25% of the patches are retained, L0

method, L1 method, and cosine similarity score method
maintain accuracy levels close to 70%, and all methods
significantly surpass the accuracy obtained by the random
preservation method. These results demonstrate that SAE-V
can accurately capture critical information in images and
that the methods proposed in Section 2.2 effectively utilized
SAE-V features during inference.

4. Alignment Experiment
In this section, we adopt cosine similarity score rank- ing al-
gorithm as a data filter (as shown in Algorithm 1) to acquire
high-quality data for model alignment.

4.1. Experiment Setup

Dataset and Model Consistent with Section 3.1.1, we se-
lected LLaVA-NeXT-7B (Liu et al., 2024) and Chameleon-
7B (Team, 2024) for our alignment experiment. Since
the LLaVA-NeXT-7B model is rather powerful in multi-
modal capabilities, we selected the Align-Anything (Ji et al.,
2024) text-image-to-text dataset for our experiment. Align-
Anything is a 400K multimodal preference dataset contain-
ing fine-grained annotated multimodal input-output prefer-
ence data, and we used the 40K subset of text-image input
and text output in our experiment.

Algorithm We adopt the cosine similarity score ranking
algorithm (shown in Algorithm 1) as a filter to exclude data
with low scores. In addition, we also adopt two algorithms,
the L0 ranking, and the co-occurrence ranking. 4

Evaluation To evaluate the efficiency of our methods,
we applied Direct Preference Optimization (DPO) to the
model using the filtered datasets. 5 We then evaluate the
multimodal capabilities of the model using LLaVA-Bench
(Liu et al., 2024) benchmarks.

4.2. Experiment Results

We performed SAE-V-based data filter with different fil-
tering ratios on the LLaVA-NeXT-7B model and Align-
Anything dataset. The filtered datasets were then used to
fine-tune MLLMs, which were evaluated on LLaVA-Bench.
The results (shown in Figure 7) demonstrate that our SAE-
V-based filtering method effectively enhances the alignment

4Detailed descriptions of these ablation algorithms and their
corresponding hyperparameters are provided in Appendix B.

5We present detailed training parameters in Appendix B.2.
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Figure 7. The performance of SAE-V-based data filter method
SAE-V-based data filter method significantly outperforms the ran-
dom selection baseline. Specifically, the cosine similarity filter
demonstrated the most stable performance, consistently surpassing
the random filter across all data percentages and achieving 108%
of the full dataset’s performance with only 20% of the data. The
co-occurrence filter peaked at 50% of the data, reaching a score
of 108.17, (115% of the full dataset’s performance). As a more
straightforward utilization of SAE-V model, the L0 filter also gen-
erally outperforms the random selection baseline.

of LLaVA-NeXT-7B, even with reduced data. Since most of
the data in Align-Anything contribute positively to model
alignment, the performance of the model is higher than the
base model without any fine-tuning in most cases. At any
data filter proportion, the SAE-V-based data filtering method
outperforms the random selection baseline, with the best
result being 108.17 (115% of the full dataset’s performance)
achieved using 50% filtered data from the cooccurrence
filter, and 104.20 (108% of the full dataset’s performance)
achieved using 20% filtered data from the cosine similarity
filter. However, as the dataset inevitably contains some low-
quality data, the performance is optimal with a moderate
data proportion and shows a downward trend as the data
proportion increases.
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Figure 8. The relationship between average cosine similarity
score and MLLM performance. We measure the average cosine
similarity score of models in Section 4.2, and fit a linear relation-
ship between model performance and average cosine similarity
score. The correlation coefficient of the correlation reaches 0.84,
suggesting that higher similarity scores on SAE-V features corre-
spond to enhanced MLLM performance.
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4.3. Relationship between MLLM Capability and
SAE-V Features

In the previous section, we demonstrated the effectiveness
of utilizing the cosine similarity score for data filters in
model training. To further investigate the relationship be-
tween model performance and cross-modal similarity, as
measured by cosine similarity of SAE-V features, we further
measure the average cosine similarity score of these models.
Given a dataset, we apply the cosine similarity score rank-
ing algorithm (shown in Algorithm 1) to the MLLM, and
we define the MLLM’s average cosine similarity score as
the mean score of all non-zero cross-modal weight SAE-V
features.

We calculated the average cosine similarity scores for the
models discussed in Section 4.2. The result (shown in Figure
8) revealed a positive correlation between the average cosine
similarity score of SAE-V feature and the performance of
MLLM, suggesting that higher similarity scores of SAE-V
features correspond to enhanced MLLM performance.

4.4. Ablation Study
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Figure 9. The performance of SAE-V-based data filter method
on Chameleon-7B We replicate SAE-V-based data filter on
Chameleon-7B model and Align-Anything dataset. The result
shows that on Chameleon-7B model, SAE-V-based data filter also
achieved significant performance gain compared to the random
filter. Specifically, both cosine similarity and co-occurrence filters
perform better than random filters at almost every data percentage,
and the cosine similarity filter achieved a score of 52.13 (120% of
the full dataset’s performance) with 70% data.

Ablation on Models To prove that SAE-V-based data filter
method could generalize to distinct model architectures, we
replicate SAE-V-based data filter on Chameleon-7B model
and Align-Anything dataset. The result (shown in Figure 9)
demonstrates that although Chameleon-7B performs worse
than LLaVA-NeXT-7B on LLaVA-Bench, the SAE-V-based
filter method still shows its effectiveness. When using a
smaller data proportion, the performance is strongly cor-
related with the data quantity, and thus the differences be-
tween methods are minimal. However, with a larger data
proportion, the SAE-V-based filter method significantly sur-

passes the random filter, achieving a peak of 52.13 (120%
of the full dataset’s performance) with 70% of the data. The
largest performance gap is observed in the 50-70% data
range, while the differences converge again as the data pro-
portion approaches 100%. This proves that SAE-V-based
data filter is effective on architectures other than CLIP-based
MLLM, and shows its potential to generalize across a wide
range of models.
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Figure 10. The performance of SAE-V-based data filter method
on RLAIF-V dataset. We performed an ablation study with the
RLAIF-V dataset and Chameleon-7B model to prove that SAE-
V-based data filter method can generalize across datasets. Both
cosine similarity and co-occurrence filters generally outperform
the random filter on the RLAIF-V dataset. Specifically, the cosine
similarity filter achieves the highest score of 54.23 (125% of the
full dataset’s performance) with only 10% data, demonstrating its
supreme efficiency.

Ablation on Datasets We also performed an ablation
study on the datasets to be filtered. Since the LLaVA-NeXT-
7B model is highly capable, most datasets fail to further
enhance its multimodal abilities. Therefore, we selected the
RLAIF-V dataset and the relatively weaker Chameleon-7B
model for the dataset ablation study. The results (shown in
Figure 10) further confirm that SAE-V-based data filter is
working across different datasets. Moreover, on RLAIF-V,
the cosine similarity filter could achieve a score of 54.23
(125% of the full dataset’s performance) by using only 10%
of the data, demonstrating exceptional efficiency.

Comparation with Other Filtering Methods To validate
the effectiveness of our SAE-V-based data filtering method,
we conducted an ablation study comparing it with other
similar data filtering approaches. Since there are currently
no widely recognized data filtering methods specifically
designed for multimodal data, we adapted the IFD metric
(Li et al., 2023b) method to the multimodal setting. The
result (shown in Figure 11) suggests that our data filter
method achieves a performance comparable to the IFD met-
ric. However, considering that the IFD metric needs to train
an additional cherry model, our SAE-V-based data filter
could directly fit various datasets, demonstrating greater
generalizability and efficiency.
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Figure 11. The performance of SAE-V-based data filter and
IFD metrics We replicate the IFD metric on MLLMs and compare
the result with our cosine similarity filter. The results show that
although the peak performance of SAE-V-based data filtering is
a little lower compared to IFD metric, our method could achieve
a generally similar performance compared to IFD metric without
introducing additional models and training process.

5. Related Work
Multimodal Large Language Model MLLM is a type
of LLM integrated with multimodal modules that incorpo-
rate multimodal information to deal with multimodal tasks.
Based on the method of integrating vision features into the
model, most MLLMs can be categorized into three types:

• CLIP-based MLLMs: These models encode images
with CLIP (Radford et al., 2021) and use MLP to
project visual features. Examples include LLaVA (Liu
et al., 2024) series and NExT-GPT (Wu et al., 2023).

• Early-Fusion MLLMs: These models directly tokenize
visual features for input. Examples include Chameleon
(Team, 2024) and Janus (Wu et al., 2024a) series.

• Q-Former-based MLLMs: These models use a structure
similar to Q-Former (Li et al., 2023a) to extract visual
representations, represented by Qwen-VL (Bai et al.,
2023) and MiniGPT-4 (Zhu et al., 2024).

Our study focuses on the CLIP-based and early-fusion
MLLMs. Specifically, we select LLaVA-NeXT-7B and
Chameleon-7B as the target models.

Mechanistic interpretability with Sparse Autoencoder
Mechanistic interpretability seeks to uncover and explain
the internal mechanisms that enable models to understand
input data and generate responses (Rai et al., 2024). Specif-
ically, most current mechanistic interpretability methods
focus on analyzing features, smaller units that contribute
to performing explainable semantic tasks, within models
(Olah et al., 2020).

Sparse Autoencoder (SAE) aims to learn sparse and inter-
pretable features from polysemantic model representations

(Yun et al., 2021; Bricken et al., 2023; Sharkey et al., 2022;
Peigné, 2023; Elhage et al., 2022). By introducing sparsity
constraints, the activation values in the hidden layers of
SAE are mostly zero, allowing SAE to encode polysemantic
features in LLM to monosemantic ones.

In this paper, we extended the scope of SAE to MLLMs,
thereby building SAE-V . We further demonstrated SAE-V’s
capability and transferability on MLLMs, and built a data
filter tool based on SAE-V to enhance multimodal alignment.

Data Filter in Alignment Data filtering ensures that only
relevant high-quality data are used during the alignment of
LLM or MLLM s, thus reducing the quantity of data while
achieving greater performance (Zhou et al., 2023; Chen
et al., 2023; Du et al., 2023; Li et al., 2023c;b; Tu et al.,
2024). For example, LIMA (Zhou et al., 2023), ALPAGA-
SUS (Chen et al., 2023), and IFD (Li et al., 2023b) use
human annotation, API annotation and train a new model
for annotation to score data separately. Our method, SAE-
V-based data filter, provides a self-guided and interpretable
metric to evaluate the similarity of multimodal data, which
indicates their qualities. The method is stable and efficient
for models of different architectures.

6. Conclusion
This work introduced SAE-V , a framework that extends
SAE to MLLMs and improves their alignment. Through
experiments on LLaVA-NeXT-7B and Chameleon-7B, we
demonstrated that SAE-V model demonstrates excellent ca-
pability and transferability in interpreting MLLM and mul-
timodal data, and SAE-V-based data filtering methods could
achieve more than 110% performance with less than 50%
data. These results highlight SAE-V’s potential to enhance
multimodal model interpretability and alignment efficiently.

Limitation While SAE-V introduces significant advance-
ments in interpreting multimodal models and enhancing
alignment through mechanistic analysis, several limitations
remain unaddressed and warrant further exploration: (1)
Although SAE-V demonstrates superior interpretability and
data filtering efficiency compared to SAE, the theory behind
SAE-V , especially the mathematical relationship between
image-text similarity metrics, cross-modal co-occurrence
features, and model performance, is not fully revealed. (2)
Due to resource constraints, SAE-V is primarily evaluated
on text and vision modalities, leaving its effectiveness on
other modalities such as audio, video, and embodied AI
systems unexplored. Our future work will focus on estab-
lishing a comprehensive theoretical foundation for SAE-V
and extending its application to additional modalities, such
as audio, video, and embodied AI systems, to broaden its
utility and impact.
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Impact Statement
The source code and checkpoints of SAE-V mentioned in
this paper will be released under the CC BY-NC 4.0 li-
cense. This research has several potential risks that must
be considered. The interpretability tools introduced in this
work, while beneficial for alignment, could also be lever-
aged to manipulate or reverse-engineer model behaviors
in unintended ways. Additionally, while SAE-V provides a
self-guided filtering mechanism, it remains dependent on the
initial dataset quality, meaning biases in the dataset could
still propagate into the final model. We strongly condemn
any malicious use of the SAE-V code and checkpoints and
advocate for its responsible and ethical use.
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A. Details of Interpretability Experiment
A.1. Hyperparameter of SAE and SAE-V Models

Training

Hyper-parameters
SAE and SAE-V of

LLaVA-NeXT/Mistral
SAE and SAE-V of
Chameleon/Anole

Training Parameters
total training steps 30000 30000
batch size 4096 4096
LR 5e-5 5e-5
LR warmup steps 1500 1500
LR decay steps 6000 6000
adam beta1 0.9 0.9
adam beta2 0.999 0.999
LR scheduler name constant constant
LR coefficient 5 5
seed 42 42
dtype float32 float32
buffer batches num 32 64
store batch size prompts 4 16
feature sampling window 1000 1000
dead feature window 1000 1000
dead feature threshold 1e-4 1e-4

SAE and SAE-V Parameters
hook layer 16 8
input dimension 4096 4096
expansion factor 16 32
feature number 65536 131072
context size 4096 2048

Table 2. Hyperparameters of training SAE and SAE-V models.

The hyperparameters of the training SAE and SAE-V are
shown in Table A.1. The differences in training parameters
arise because the LLaVA-NeXT-7B model requires more
GPU memory to handle vision input, so fewer batches can
be cached. For the SAE and SAE-V parameters, we set
different hook layers and context sizes based on the distinct
architectures of the two models. We also experimented with
different feature numbers on both models, but found that
only around 30,000 features are actually activated during
training. All training runs were conducted until convergence.
All SAE and SAE-V training is performed on 8×A800 GPUs.
We ensured that the variations in the parameters did not
affect the experiment results.

B. Details of alignment experiment
We present details of alignment experiment in this section,
including algorithms and hyperparameters of algorithms
and model training.

B.1. Algorithms in alignment experiment

The complete algorithm of L0-based Ranking and co-
occurring L0-based Ranking are shown in Algorithm 2 and
Algorithm 3. These two algorithms serve as ablation vari-
ants of the cosine similarity score Ranking (shown in Al-
gorithm 1). The L0-based Ranking represents a straightfor-
ward algorithm that selects data by directly computing the
sum of L0 for each data point. The co-occurring L0-based
Ranking takes an initial step toward cross-modal consid-

eration by only counting features that are activated across
both modalities. Building upon these algorithms, we further
developed the cosine similarity score Ranking approach.

Algorithm 2 L0-based Ranking
Require: multimodal dataset D = {di}pi=1; MLLM
Mθ; SAE-V Sθ; features of SAE-V; activation bound: δ;
Fθ: {fk}nk=1;
Ensure: Ranked data DR

for each di ∈ D do
Zi ← Sθ(Mθ(di))
Fi ← {fk:∥fkZ

⊤
i ∥∞ > δ}

L0,i ← |Fi|
end for
DR ← Sort(D, {L0,i}ni=1)

Algorithm 3 Co-ocurring L0-based Ranking
Require: Text token vocabulary: T ; vision token vocab-
ulary: V ; multimodal dataset D = {di}pi=1; MLLMMθ;
SAE-V Sθ; features of SAE-V Fθ: {fk}nk=1; activation
bound: δ;
Ensure: Ranked data DR

Initialize coocurrence feature set of data Fi ← ∅
for each di ∈ D do

Initialize activated token set of features Ak ← ∅
Hi ←Mθ(di)
Zi ← Sθ(Hi)
for each fk ∈ Fθ do
Ak ← Ak ∪{hj : hj ∈ Hi, zj = ejZi, zjf

⊤
k > δ}

if Ak ∩ T ̸= ∅ ∧ Ak ∩ V ̸= ∅ then
Fi ← Fi ∪ {fk}

end if
end for

end for
DR ← Sort(D, {|Fi|}ni=1)

Hyperparameters of Algorithms 1,2,3 The hyperparam-
eters of Algorithms 1,2,3 are shown in Table 3. We ensure
that all parameters are the same to ensure a fair comparison
between the algorithms.

Hyper-parameters Cosine similarity Coocurrence L0

top-K 5 5 5
text token vocabulary size 32000 32000 32000

vision token vocabulary size 64 64 64
activation bound 1 1 1
sample data size 1000 1000 1000

Table 3. Hyper-parameters of Algorithm 1,2,3.
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B.2. Hyperparameter of Model Training

In this section, we list out the hyperparameters used for
model training through SFT and DPO (shown in Table B.2).
All SAE training is performed on 8×A800 GPUs. To en-
sure fair comparison between algorithms, we maintained
consistent parameter settings across all experiments.

Hyper-parameters SFT DPO

max length 4096 4096
per device train batch size 8 8
per device eval batch size 8 8
gradient accumulation steps 4 4
LR scheduler type cosine cosine
LR 1e-6 1e-6
warmup steps 10 10
eval steps 50 50
epochs 3 3
val size 0.1 0.1
bf16 True True

Table 4. Hyperparameters of SFT training and DPO training.

C. Details of Applying SAE-V on Multimodal
Data

In this section, we present implementation details of the
SAE-V application experiments. We enumerate 4 image
patch selection algorithms employed in this study and pro-
vide additional case analyses. These comprehensive results
further demonstrate the robust inference capabilities of SAE-
V .

C.1. Algorithm

The complete algorithms of L0, L1, co-occurring L0, and
cosine similarity score methods are shown in Algorithm 4,
Algorithm 5, Algorithm 6 and Algorithm 7.

Algorithm 4 L0 patch filter
Require: Vision token vocabulary: V; image V ; fixed
Prompt T ; MLLMMθ; SAE-V Sθ; features of SAE-V
Fθ:{fk}nk=1; activation bound δ; mask rate γ;
Ensure: Filtered image V ′

Initialize score of each patch pi ← 0
H ←Mθ(T, V )
Z ← Sθ(H)
for each hi ∈ H do

if hi ∈ V then
pi =

∑
j 1(zij > δ)

end if
end for
K ← ⌊γ|I|⌋
V ′ ← TopK(vi ∈ V ) sorted by pi

Algorithm 5 L1 patch filter
Require: Vision token vocabulary: V; image V ; fixed
Prompt T ; MLLMMθ; SAE-V Sθ; features of SAE-V
Fθ:{fk}nk=1; activation bound δ; mask rate γ;
Ensure: Filtered image V ′

Initialize score of each patch pi ← 0
H ←Mθ(T, V )
Z ← Sθ(H)
for each hi ∈ H do

if hi ∈ V then
pi =

∑
j(zij)

end if
end for
K ← ⌊γ|I|⌋
V ′ ← TopK(vi ∈ V ) sorted by pi

These algorithms take images as input and produce masked
images, where the masking proportion is determined by the
mask rate γ. All algorithms utilize the activation patterns
of SAE-V features for patch filtering, with their primary
distinctions lying in their methods of computing feature
activation (L0, L1) and measuring cross-modal similarity
(co-occurring L0, cosine similarity score).

Algorithm 6 Co-occuring L0 patch filter
Require: Text token vocabulary T ; vision token vocabu-
lary: V; image V ; fixed Prompt T ; MLLMMθ; SAE-V
Sθ; features of SAE-V Fθ:{fj}nj=1; activation bound δ;
mask rate γ;
Ensure: Filtered image V ′

Initialize score of each patch pi ← 0, co-occuring feature
set F ← ∅ and activated token set of features Aj ← ∅
H ←Mθ(T, V )
Z ← Sθ(H)
for each fj ∈ Fθ do
Aj ← Aj ∪ {hi: hi ∈ H,zi = eiZ, zif

⊤
j > δ}

if Aj ∩ T ̸= ∅ ∧ Aj ∩ V ̸= ∅ then
F ← F ∪ {fj}

end if
end for
for each hi ∈ H do

if hi ∈ V then
pi =

∑
j 1(zij > δ ∧ fj ∈ F )

end if
end for
K ← ⌊γ|I|⌋
V ′ ← TopK(vi ∈ V ) sorted by pi
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Algorithm 7 Cosine similarity score patch filter
Require: Text token vocabulary T ; vision token vocabu-
lary: V; image V ; fixed Prompt T ; MLLMMθ; SAE-V
Sθ; features of SAE-V Fθ:{fj}nj=1; activation bound δ;
mask rate γ;cosine similarity weight {ωj}nj=1

Ensure: Filtered image V ′;
Initialize score of each patch pi ← 0, co-occuring feature
set F ← ∅ and activated token set of features Aj ← ∅
H ←Mθ(T, V )
Z ← Sθ(H)
for each fj ∈ Fθ do
Aj ← Aj ∪ {hi: hi ∈ H,zi = eiZ, zif

⊤
j > δ}

if Aj ∩ T ̸= ∅ ∧ Aj ∩ V ̸= ∅ then
F ← F ∪ {fj}

end if
end for
for each hi ∈ H do

if hi ∈ V then
pi =

∑
j 1(zij > δ ∧ fj ∈ F ) ωj

end if
end for
K ← ⌊γ|I|⌋
V ′ ← TopK(vi ∈ V ) sorted by pi

C.2. Case Analysis

We present 4 cases in Figure 12, corresponding to each of
our metric in Section 3.2. The cases intuitively show that
L0 method and cosine similarity score method are more ca-
pable of identifying significant patches in images compared
to other methods, which aligns with the quantized results
shown in Figure 6.

(b) ℒ0 method

(d) Co-occurring ℒ0 method

(c) ℒ1 method

(e) Cosine similarity score method

(a) Original image

Figure 12. Case Analysis of all image patch filtering methods
in Section 3.2. We present the original image (a) and 4 case for
methods, L0 (b), L1 (c), co-occurring L0 (d) and cosine similarity
score (e). Each case contains 3 images as preserving top 75%
patches, top 50% patches and top 25% patches.

We present 5 cases filtered with the cosine similarity score
method in Figure 13. The results show that SAE-V model
performs excellently in capturing critical patches in images.

Original                Top 75%            Top 50%             Top 25%

Figure 13. Case Analysis of cosine similarity score method in
Section 3.2. 5 cases filtered with cosine similarity score method
are shown in the Figure. Each case contains contains 4 images as
original image, preserving top 75% patches, top 50% patches and
top 25% patches.
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